Song, Lu, and Shi et al. demonstrated that an MHC-II restricted neoantigen vaccine (M44) increased inflammatory signaling within the TME, enhanced CD4+ and CD8+ T cell infiltration, and reduced tumor growth in B16 tumors, while showing signs of T cell exhaustion. Vaccination increased the inferred interaction between TIGIT on T cells and its ligand PVR on myeloid cells, impairing the function and proliferation of Th1 and effector and memory CD8+ T cells. M44 vaccine plus TIGIT antibody inhibited tumor growth, enhanced the helper and cytotoxic functions of antigen-specific CD4+ T cells, and increased effector and memory CD8+ T cells.
Contributed by Shishir Pant
Background: Cold tumors, characterized by poor T cell infiltration and an immunosuppressive tumor microenvironment (TME), are generally resistant to immune-checkpoint inhibitors (ICIs). Although CD4+ T cells play a critical role in anti-tumor immunity, it remains unclear whether major histocompatibility complex (MHC)-II-restricted neoantigen vaccines can reprogram the immunosuppressive TME and overcome ICI resistance.
Methods: Using the B16F10 model, we evaluated the MHC-II-restricted vaccine efficacy, profiled immune responses via flow cytometry and single-cell RNA sequencing, and identified the potential combination therapy targets poliovirus receptor (PVR) via NicheNet analysis. The combined efficacy was then validated in vitro and in vivo.
Findings: MHC-II-restricted neoantigen vaccine promoted inflammatory signaling within the TME and enhanced infiltration of CD4+ and CD8+ T cells, along with increased interferon (IFN)-γ production and signs of T cell exhaustion, which provided a prerequisite for ICI response. NicheNet analysis revealed enrichment of the inhibitory immune-checkpoint axis PVR-T cell immunoglobulin and ITIM domain (TIGIT) following vaccination. The combination of the vaccines and TIGIT blockade exhibited synergistic anti-tumor efficacy. This combination enhanced cytokine production by antigen-specific T cells, promoted effector memory differentiation, and delayed exhaustion of CD8+ T cells.
Conclusions: MHC-II-restricted neoantigen vaccine remodels the immune inhibitory TME with insufficient T cell infiltration and synergizes with TIGIT blockade to suppress tumor growth, providing a promising combinatorial strategy for cold tumors.
Funding: Supported by the National Key Research and Development Program of China (2023YFC2506400), the National Natural Science Foundation (82373263), and the Fundamental Research Funds for the Central Universities (0214-14380506).


