Smith et al. found that adding CpG in vitro to peptide-stimulated splenocytes from Pmel-1 transgenic mice generated an IL-2Rαhigh ICOShigh CD39low CD8+ T cell product with improved in vivo persistence and efficacy in treating B16F10 tumors. In acquiring this phenotype, T cells did not sense CpG or respond to soluble cues, but required interaction with APCs in the bulk culture. Depletion of B cells, but not DCs, macrophages, CD4+ T cells, or NK cells, prevented this phenotype and in vivo efficacy. Coculture of purified T and B cells with CpG was sufficient to boost T cell persistence and survival of B16F10 tumor-bearing mice treated with adoptive Pmel-1 transfer.
Contributed by Alex Najibi
BACKGROUND: Adoptive T cell transfer (ACT) therapy improves outcomes in patients with advanced malignancies, yet many individuals relapse due to the infusion of T cells with poor function or persistence. Toll-like receptor (TLR) agonists can invigorate antitumor T cell responses when administered directly to patients, but these responses often coincide with toxicities. We posited that TLR agonists could be repurposed ex vivo to condition T cells with remarkable potency in vivo, circumventing TLR-related toxicity.
METHODS: In this study we investigated how tumor-specific murine CD8(+) T cells and human tumor infiltrating lymphocytes (TILs) are impacted when expanded ex vivo with the TLR9 agonist CpG. RESULTS: Herein we reveal a new way to reverse the tolerant state of adoptively transferred CD8(+) T cells against tumors using TLR-activated B cells. We repurposed the TLR9 agonist, CpG, commonly used in the clinic, to bolster T cell-B cell interactions during expansion for ACT. T cells expanded ex vivo from a CpG-treated culture demonstrated potent antitumor efficacy and prolonged persistence in vivo. This antitumor efficacy was accomplished without in vivo administration of TLR agonists or other adjuvants of high-dose interleukin (IL)-2 or vaccination, which are classically required for effective ACT therapy. CpG-conditioned CD8(+) T cells acquired a unique proteomic signature hallmarked by an IL-2R_(high)ICOS(high)CD39(low) phenotype and an altered metabolic profile, all reliant on B cells transiently present in the culture. Likewise, human TILs benefitted from expansion with CpG ex vivo, as they also possessed the IL-2R_(high)ICOS(high)CD39(low) phenotype. CpG fostered the expansion of potent CD8(+) T cells with the signature phenotype and antitumor ability via empowering a direct B-T cell interaction. Isolated B cells also imparted T cells with the CpG-associated phenotype and improved tumor immunity without the aid of additional antigen-presenting cells or other immune cells in the culture.
CONCLUSIONS: Our results demonstrate a novel way to use TLR agonists to improve immunotherapy and reveal a vital role for B cells in the generation of potent CD8(+) T cell-based therapies. Our findings have immediate implications in the clinical treatment of advanced solid tumors.