Combination therapy targeting soluble MIC and CTLA-4 in a transgenic adenocarcinoma mouse model improved the antitumor effect of anti-CTLA-4 therapy by increasing the functional potential of dendritic cells and antigen-specific CD8+ T cells, while also alleviating anti-CTLA-4-induced colitis.
Antibody therapy targeting cytotoxic T lymphocyte-associated antigen 4 (CTLA4) elicited survival benefits in cancer patients; however, the overall response rate is limited. In addition, anti-CTLA4 antibody therapy induces a high rate of immune-related adverse events. The underlying factors that may influence anti-CTLA4 antibody therapy are not well defined. We report the impact of a cancer-derived immune modulator, the human-soluble natural killer group 2D (NKG2D) ligand sMIC (soluble major histocompatibility complex I chain-related molecule), on the therapeutic outcome of anti-CTLA4 antibody using an MIC transgenic spontaneous TRAMP (transgenic adenocarcinoma of the mouse prostate)/MIC tumor model. Unexpectedly, animals with elevated serum sMIC (sMIChi) responded poorly to anti-CTLA4 antibody therapy, with significantly shortened survival due to increased lung metastasis. These sMIChi animals also developed colitis in response to anti-CTLA4 antibody therapy. Coadministration of an sMIC-neutralizing monoclonal antibody with the anti-CTLA4 antibody alleviated treatment-induced colitis in sMIChi animals and generated a cooperative antitumor therapeutic effect by synergistically augmenting innate and adoptive antitumor immune responses. Our findings imply that a new combination therapy could improve the clinical response to anti-CTLA4 antibody therapy. Our findings also suggest that prescreening cancer patients for serum sMIC may help in selecting candidates who will elicit a better response to anti-CTLA4 antibody therapy.