Yigit and Wang et al. investigated the effects of SLAMF6, a homophilic receptor found on hematopoietic cells. Transfer of murine SLAMF6+ CLL cells into SLAMF6-/- recipients expanded PD-1+CD8+ T cells with impaired cytotoxicity, suggesting SLAMF6 counteracts T cell exhaustion. Treatment of WT mice with an agonist SLAMF6 Ab significantly decreased CLL tumor burden in the percutaneous space (where ADCC is ineffective), increased the number of antigen-experienced CD8+ T cells, and decreased B16 (SLAMF6-) tumor burden. Agonist SLAMF6 improved degranulation capacity of in vitro exhausted human CD8+ T cells.
Contributed by Katherine Turner
The tumor microenvironment in leukemia and solid tumors induces a shift of activated CD8+ cytotoxic T cells to an exhausted state, characterized by loss of proliferative capacity and impaired immunologic synapse formation. Efficient strategies and targets need to be identified to overcome T-cell exhaustion and further improve overall responses in the clinic. Here, we took advantage of the Emu-TCL1 chronic lymphocytic leukemia (CLL) and B16 melanoma mouse models to assess the role of the homophilic cell surface receptor SLAMF6 as an immune checkpoint regulator. The transfer of SLAMF6+ Emu-TCL1 cells into SLAMF6-/- recipients, in contrast to wild-type (WT) recipients, significantly induced expansion of a PD-1+ subpopulation among CD3+CD44+CD8+ T cells, which had impaired cytotoxic functions. Conversely, administering anti-SLAMF6 significantly reduced the leukemic burden in Emu-TCL1 recipient WT mice concomitantly with a loss of PD-1+CD3+CD44+CD8+ T cells with significantly increased effector functions. Anti-SLAMF6 significantly reduced leukemic burden in the peritoneal cavity, a niche where antibody-dependent cellular cytotoxicity (ADCC) is impaired, possibly through activation of CD8+ T cells. Targeting of SLAMF6 not only impacted tumor growth in B cell-related leukemia and lymphomas but also non-hematopoietic tumors like B16 melanoma, where SLAMF6 is not expressed. In vitro exhausted CD8+ T cells showed increased degranulation when anti-human SLAMF6 was added in culture. Taken together, anti-SLAMF6 both effectively corrected CD8+ T-cell dysfunction and had a direct effect on tumor progression. The outcomes of our studies suggest that targeting SLAMF6 is a potential therapeutic strategy.