Chervin, Stone, et al. developed ABBV-184, a CD3 bispecific T cell engager that consists of a soluble TCR engineered to recognize a survivin-derived peptide bound to HLA-A*02:01 specifically expressed on tumor cells, linked to a binder to the CD3 receptor. In vitro, ABBV-184 activated T cells and induced dose-dependent redirected T cell killing of various antigen-presenting solid and hematological tumor cell lines and patient-derived samples. In various (humanized) xenograft tumor models, treatment induced regression of tumors, which was dependent on immune cell tumor infiltration. Treatment did not induce adverse events.
Contributed by Maartje Wouters
ABSTRACT: CD3 bispecific T cell engagers (TCE), comprised of a tumor targeting domain linked to a CD3 binding domain, function by bridging target-positive tumors and CD3-expressing effector T cells enabling redirected T cell-mediated killing of tumor cells. Although the majority of CD3 bispecific molecules in clinical development incorporate tumor-targeting antibody-based binding domains, many tumor-associated antigens derive from intracellular proteins and are not accessible to targeting via antibody. Intracellular proteins processed into short peptide fragments and presented on the cell surface by major histocompatibility complex proteins (MHC) are recognized by T cell receptors (TCR) on the surface of T cells. Here we describe the generation and preclinical evaluation of ABBV-184, a novel TCR/anti-CD3 bispecific composed of a highly selective soluble TCR that binds a peptide derived from the oncogene survivin (BIRC5) bound to the Class I MHC allele human leukocyte antigen (HLA)-A*02:01 expressed on tumor cells, linked to a specific binder to the CD3 receptor on T cells. ABBV-184 drives an optimal distance between T cell and target cell thereby enabling sensitive recognition of low-density peptide/MHC targets. Consistent with the expression profile of survivin across a broad range of both hematological and solid tumors, treatment of AML and NSCLC cell lines with ABBV-184 results in T cell activation, proliferation, and potent redirected cytotoxicity of HLA-A2 positive target cell lines, both in vitro and in vivo, including patient-derived AML samples. These results indicate that ABBV-184 is an attractive clinical candidate for the treatment of patients with AML and NSCLC.