Repolarizing Tumor-associated macrophages (TAMs) to anti-tumor M1 macrophages with microRNA (miR) is a plausible approach for cancer treatment. However, how to achieve TAM-targeted miR delivery remains a challenge. The present study generated redox/pH dual-responsive hybrid polypeptide nanovectors, which consisted of self-crosslinked redox-responsive nanoparticles based on galactose-functionalized n-butylamine-poly(l-lysine)-b-poly(l-cysteine) polypeptides (GLC) coated with DCA-grafted sheddable PEG-PLL (sPEG) copolymers. The ex vivo study showed that sPEG shielded cationic GLC core at physiological pH but quickly shed off to re-expose GLC due to it charge reversible property. Encapsulation with sPEG/GLC nanovectors effectively facilitated macrophage-targeted miR delivery at the acidic condition but diminished miR uptake at neutral pH. Administration of miR155-loaded sPEG/GLC (sPEG/GLC/155) nanocomplexes increased miR155 expression in TAMs about 100-400 folds both in vitro and in vivo. sPEG/GLC/155 also effectively repolarized immunosuppressive TAMs to anti-tumor M1 macrophages through elevating M1 macrophage markers (IL-12, iNOS, MHC II) and suppressing M2 macrophage markers (Msr2 and Arg1) in TAMs. Moreover, the treatment of sPEG/GLC/155 significantly increased activated T lymphocytes and NK cells in tumors, which consequently led to robust tumor regression. Hence, TAM-targeted delivery of miR with redox/pH dual-responsive sPEG/GLC nanovectors could be a promising approach to re-polarize TAMs to M1 macrophages in situ and induce tumor regression.

Author Info: (1) Key Lab of Health Informatics of Chinese Academy of Sciences, Guangdong Key Laboratory of Nanomedicine, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science,

Author Info: (1) Key Lab of Health Informatics of Chinese Academy of Sciences, Guangdong Key Laboratory of Nanomedicine, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen 518055, PR China. (2) Key Lab of Health Informatics of Chinese Academy of Sciences, Guangdong Key Laboratory of Nanomedicine, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen 518055, PR China; Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China. (3) Key Lab of Health Informatics of Chinese Academy of Sciences, Guangdong Key Laboratory of Nanomedicine, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen 518055, PR China. (4) Key Lab of Health Informatics of Chinese Academy of Sciences, Guangdong Key Laboratory of Nanomedicine, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen 518055, PR China. (5) Key Lab of Health Informatics of Chinese Academy of Sciences, Guangdong Key Laboratory of Nanomedicine, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen 518055, PR China. (6) Key Lab of Health Informatics of Chinese Academy of Sciences, Guangdong Key Laboratory of Nanomedicine, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen 518055, PR China. Electronic address: yf.ma@siat.ac.cn.